Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Mol Psychiatry ; 19(3): 311-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24145376

RESUMO

Cognitive functions are highly heritable and the impact of complex genetic interactions, though undoubtedly important, has received little investigation. Here we show in an animal model and in a human neuroimaging experiment a consistent non-linear interaction between two genes--catechol-O-methyl transferase (COMT) and dysbindin (dys; dystrobrevin-binding protein 1 (DTNBP1))--implicated through different mechanisms in cortical dopamine signaling and prefrontal cognitive function. In mice, we found that a single genetic mutation reducing expression of either COMT or DTNBP1 alone produced working memory advantages, while, in dramatic contrast, genetic reduction of both in the same mouse produced working memory deficits. We found evidence of the same non-linear genetic interaction in prefrontal cortical function in humans. In healthy volunteers (N=176) studied with functional magnetic resonance imaging during a working memory paradigm, individuals homozygous for the COMT rs4680 Met allele that reduces COMT enzyme activity showed a relatively more efficient prefrontal engagement. In contrast, we found that the same genotype was less efficient on the background of a dys haplotype associated with decreased DTNBP1 expression. These results illustrate that epistasis can be functionally multi-directional and non-linear and that a putatively beneficial allele in one epistastic context is a relatively deleterious one in another. These data also have important implications for single-locus association analyses of complex traits.


Assuntos
Proteínas de Transporte/fisiologia , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/fisiologia , Epistasia Genética , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Alelos , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Catecol O-Metiltransferase/biossíntese , Disbindina , Proteínas Associadas à Distrofina , Neuroimagem Funcional , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Mutação
4.
Mol Psychiatry ; 17(10): 1007-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21788944

RESUMO

AKT1 controls important processes in medial temporal lobe (MTL) development and plasticity, but the impact of human genetic variation in AKT1 on these processes is not known in healthy or disease states. Here, we report that an AKT1 variant (rs1130233) previously associated with AKT1 protein expression, prefrontal function and schizophrenia, affects human MTL structure and memory function. Further, supporting AKT1's role in transducing hippocampal neuroplasticity and dopaminergic processes, we found epistasis with functional polymorphisms in BDNF and COMT--genes also implicated in MTL biology related to AKT1. Consistent with prior predictions that these biologic processes relate to schizophrenia, we found epistasis between the same AKT1, BDNF and COMT functional variants on schizophrenia risk, and pharmacogenetic interactions of AKT1 with the effects on cognition and brain volume measures by AKT1 activators in common clinical use--lithium and sodium valproate. Our findings suggest that AKT1 affects risk for schizophrenia and accompanying cognitive deficits, at least in part through specific genetic interactions related to brain neuroplasticity and development, and that these AKT1 effects may be pharmacologically modulated in patients.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Lobo Temporal/patologia , Antipsicóticos/uso terapêutico , Mapeamento Encefálico , Fator Neurotrófico Derivado do Encéfalo/genética , Catecol O-Metiltransferase/genética , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Farmacoeconomia , Epistasia Genética/efeitos dos fármacos , Epistasia Genética/genética , Feminino , Estudos de Associação Genética , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico , Lobo Temporal/irrigação sanguínea , Lobo Temporal/efeitos dos fármacos
6.
Neuroscience ; 164(1): 1-6, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19751805

RESUMO

In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function in Health and Disease" provides an overview over how the "imaging genetics" approach is currently applied in the various fields of systems neuroscience to reveal the genetic underpinnings of complex behaviours and brain diseases. While the rapidly emerging field of imaging genetics holds great promise, the integration of genetic and neuroimaging data also poses major methodological and conceptual challenges. Therefore, this special issue also focuses on how these challenges can be met to fully exploit the synergism of genetically informed brain imaging.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Fenótipo , Animais , Comportamento/fisiologia , Mapeamento Encefálico , Meio Ambiente , Variação Genética , Humanos , Transtornos Mentais/genética , Transtornos Mentais/patologia , Transtornos Mentais/fisiopatologia
8.
Mol Psychiatry ; 13(3): 313-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17519928

RESUMO

Little is known about neural mechanisms underlying human personality and temperament, despite their considerable importance as highly heritable risk mediators for somatic and psychiatric disorders. To identify these circuits, we used a combined genetic and imaging approach focused on Monoamine Oxidase A (MAOA), encoding a key enzyme for monoamine metabolism previously associated with temperament and antisocial behavior. Male carriers of a low-expressing genetic variant exhibited dysregulated amygdala activation and increased functional coupling with ventromedial prefrontal cortex (vmPFC). Stronger coupling predicted increased harm avoidance and decreased reward dependence scores, suggesting that this circuitry mediates a part of the association of MAOA with these traits. We utilized path analysis to parse the effective connectivity within this system, and provide evidence that vmPFC regulates amygdala indirectly by influencing rostral cingulate cortex function. Our data implicate a neural circuit for variation in human personality under genetic control, provide an anatomically consistent mechanism for vmPFC-amygdala interactions underlying this variation, and suggest a role for vmPFC as a superordinate regulatory area for emotional arousal and social behavior.


Assuntos
Variação Genética , Individualidade , Monoaminoxidase/genética , Personalidade/genética , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico , Expressão Facial , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Biológicos , Vias Neurais/irrigação sanguínea , Vias Neurais/fisiologia , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa/métodos , Córtex Pré-Frontal/irrigação sanguínea
10.
Mol Psychiatry ; 12(9): 854-69, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767149

RESUMO

Cortical GABAergic dysfunction has been implicated as a key component of the pathophysiology of schizophrenia and decreased expression of the gamma-aminobutyric acid (GABA) synthetic enzyme glutamic acid decarboxylase 67 (GAD(67)), encoded by GAD1, is found in schizophrenic post-mortem brain. We report evidence of distorted transmission of single-nucleotide polymorphism (SNP) alleles in two independent schizophrenia family-based samples. In both samples, allelic association was dependent on the gender of the affected offspring, and in the Clinical Brain Disorders Branch/National Institute of Mental Health (CBDB/NIMH) sample it was also dependent on catechol-O-methyltransferase (COMT) Val158Met genotype. Quantitative transmission disequilibrium test analyses revealed that variation in GAD1 influenced multiple domains of cognition, including declarative memory, attention and working memory. A 5' flanking SNP affecting cognition in the families was also associated in unrelated healthy individuals with inefficient BOLD functional magnetic resonance imaging activation of dorsal prefrontal cortex (PFC) during a working memory task, a physiologic phenotype associated with schizophrenia and altered cortical inhibition. In addition, a SNP in the 5' untranslated (and predicted promoter) region that also influenced cognition was associated with decreased expression of GAD1 mRNA in the PFC of schizophrenic brain. Finally, we observed evidence of statistical epistasis between two SNPs in COMT and SNPs in GAD1, suggesting a potential biological synergism leading to increased risk. These coincident results implicate GAD1 in the etiology of schizophrenia and suggest that the mechanism involves altered cortical GABA inhibitory activity, perhaps modulated by dopaminergic function.


Assuntos
Córtex Cerebral/fisiopatologia , Expressão Gênica/fisiologia , Predisposição Genética para Doença , Glutamato Descarboxilase/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Adolescente , Adulto , Alelos , Catecol O-Metiltransferase/genética , Córtex Cerebral/irrigação sanguínea , Saúde da Família , Feminino , Frequência do Gene , Humanos , Processamento de Imagem Assistida por Computador/métodos , Desequilíbrio de Ligação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Esquizofrenia/genética , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Fatores Sexuais
11.
Mol Psychiatry ; 11(9): 867-77, 797, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16786032

RESUMO

Catechol-O-methyltransferase (COMT) has been shown to be critical for prefrontal dopamine flux, prefrontal cortex-dependent cognition and activation. Several potentially functional variants in the gene have been identified, but considerable controversy exists regarding the contribution of individual alleles and haplotypes to risk for schizophrenia, partly because clinical phenotypes are ill-defined and preclinical studies are limited by lack of adequate models. Here, we propose a neuroimaging approach to overcome these limitations by characterizing the functional impact of ambiguous haplotypes on a neural system-level intermediate phenotype in humans. Studying 126 healthy control subjects during a working-memory paradigm, we find that a previously described risk variant in a functional Val158Met (rs4680) polymorphism interacts with a P2 promoter region SNP (rs2097603) and an SNP in the 3' region (rs165599) in predicting inefficient prefrontal working memory response. We report evidence that the nonlinear response of prefrontal neurons to dopaminergic stimulation is a neural mechanism underlying these nonadditive genetic effects. This work provides an in vivo approach to functional validation in brain of the biological impact of complex genetic variations within a gene that may be critical for its clinical association.


Assuntos
Encéfalo/fisiologia , Catecol O-Metiltransferase/genética , Variação Genética , Memória/fisiologia , Polimorfismo de Nucleotídeo Único , Adulto , Substituição de Aminoácidos , Sequência de Bases , Encéfalo/enzimologia , Dopamina/metabolismo , Feminino , Humanos , Íntrons , Masculino , Polimorfismo Genético , Córtex Pré-Frontal/fisiologia , Tempo de Reação/genética
12.
Neurology ; 58(4): 630-5, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11865144

RESUMO

BACKGROUND: There are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. OBJECTIVE: To delineate age-related changes in the physiology of brain systems subserving simple motor behavior. METHODS: Ten strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced "button-press" motor task with their dominant right hand alternating with a rest state. RESULTS: Although the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score plus minus SD, young subjects = 547 +/- 97 ms, elderly subjects = 794 +/- 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. CONCLUSIONS: The results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade
13.
Biol Psychiatry ; 50(11): 825-44, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11743939

RESUMO

This article reviews prefrontal cortical biology as it relates to pathophysiology and genetic risk for schizophrenia. Studies of prefrontal neurocognition and functional neuroimaging of prefrontal information processing consistently reveal abnormalities in patients with schizophrenia. Abnormalities of prefrontal information processing also are found in unaffected individuals who are genetically at risk for schizophrenia, suggesting that genetic polymorphisms affecting prefrontal function may be susceptibility alleles for schizophrenia. One such candidate is a functional polymorphism in the catechol-o-methyl transferase (COMT) gene that markedly affects enzyme activity and that appears to uniquely impact prefrontal dopamine. The COMT genotype predicts performance on prefrontal executive cognition and working memory tasks. Functional magnetic resonance imaging confirms that COMT genotype affects prefrontal physiology during working memory. Family-based association studies have revealed excessive transmission to schizophrenic offspring of the allele (val) related to poorer prefrontal function. These various data provide convergent evidence that the COMT val allele increases risk for schizophrenia by virtue of its effect on dopamine-mediated prefrontal information processing-the first plausible mechanism for a genetic effect on normal human cognition and risk for mental illness.


Assuntos
Catecol O-Metiltransferase/genética , Cognição , Neurônios/enzimologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Alelos , Animais , Catecol O-Metiltransferase/metabolismo , Dopamina/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Biológicos , Testes Neuropsicológicos , Polimorfismo Genético , Córtex Pré-Frontal/enzimologia , Esquizofrenia/enzimologia
14.
Proc Natl Acad Sci U S A ; 98(12): 6917-22, 2001 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-11381111

RESUMO

Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val(108/158) Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11-16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.


Assuntos
Catecol O-Metiltransferase/genética , Lobo Frontal/fisiologia , Esquizofrenia/etiologia , Adulto , Alelos , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
Biol Psychiatry ; 49(1): 39-46, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11163778

RESUMO

BACKGROUND: The specific intracellular effects of antipsychotic drugs are largely unknown. Studies in animals have suggested that antipsychotics modify the expression of various intraneuronal proteins, but no analogous in vivo data in humans are available. The objective of the present study was to assess whether antipsychotics modify N-acetylaspartate (an intraneuronal marker of neuronal functional integrity) measures in brains of patients with schizophrenia. METHODS: We used proton magnetic resonance spectroscopic imaging to study 23 patients with schizophrenia (DSM-IV diagnosis) using a within-subject design. Patients were studied twice: once while on a stable regimen of antipsychotic drug treatment (for at least 4 weeks) and once while off medication for at least 2 weeks. Several cortical and subcortical regions were assessed, including the dorsolateral prefrontal cortex and the hippocampal area. RESULTS: Analysis of variance showed that, while on antipsychotics, patients had significantly higher N-acetylaspartate measures in the dorsolateral prefrontal cortex (p =.002). No other region showed any significant effect of treatment. CONCLUSIONS: These results indicate that antipsychotic drugs increase N-acetylaspartate measures selectively in the dorsolateral prefrontal cortices of patients with schizophrenia, suggesting that these drugs modify in a regionally specific manner the function of a population of cortical neurons. N-Acetylaspartate measures may provide a useful tool to further investigate the effects of antipsychotics at the intracellular level.


Assuntos
Antipsicóticos/efeitos adversos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Química Encefálica/efeitos dos fármacos , Esquizofrenia/metabolismo , Adulto , Antipsicóticos/uso terapêutico , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Escalas de Graduação Psiquiátrica , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
16.
Cereb Cortex ; 10(11): 1078-92, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11053229

RESUMO

Evidence implicates subtle neuronal pathology of the prefrontal cortex (PFC) in schizophrenia, but how this pathology is reflected in physiological neuroimaging experiments remains controversial. We investigated PFC function in schizophrenia using functional magnetic resonance imaging (fMRI) and a parametric version of the n-back working memory (WM) task. In a group of patients who performed relatively well on this task, there were three fundamental deviations from the 'healthy' pattern of PFC fMRI activation to varying WM difficulty. The first characteristic was a greater magnitude of PFC fMRI activation in the context of slightly impaired WM performance (i.e. physiological inefficiency). The second was that the significant correlations between behavioral WM performance and dorsal PFC fMRI activation were in opposite directions in the two groups. Third, the magnitude of the abnormal dorsal PFC fMRI response was predicted by an assay of N-acetylaspartate concentrations (NAA) in dorsal PFC, a measure of neuronal pathology obtained using proton magnetic resonance spectroscopy. Patients had significantly lower dorsal PFC NAA than controls and dorsal PFC NAA inversely predicted the fMRI response in dorsal PFC (areas 9, 46) to varying WM difficulty - supporting the assumption that abnormal PFC responses arose from abnormal PFC neurons. These data suggest that under certain conditions the physiological ramifications of dorsal PFC neuronal pathology in schizophrenia includes exaggerated and inefficient cortical activity, especially of dorsal PFC.


Assuntos
Ácido Aspártico/análogos & derivados , Imageamento por Ressonância Magnética , Memória/fisiologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Análise de Variância , Ácido Aspártico/metabolismo , Feminino , Humanos , Masculino , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia
17.
Am J Psychiatry ; 157(10): 1646-51, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11007719

RESUMO

OBJECTIVE: Certain cognitive, behavioral, and emotional deficits (so-called negative symptoms) in patients with schizophrenia have often been attributed to prefrontal cortical pathology, but direct evidence for a relationship between prefrontal neuronal pathology and negative symptoms has been lacking. The authors hypothesized that an in vivo measure of prefrontal neuronal pathology (N:-acetylaspartate [NAA] levels) in patients with schizophrenia would predict negative symptoms. METHOD: Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and rating scales for negative and positive symptoms were used to study 36 patients with schizophrenia. Magnetic resonance spectra were analyzed as metabolite ratios, and parametric correlations were performed. RESULTS: A regionally selective negative correlation was found between prefrontal NAA-creatine ratio and negative symptom ratings in this group of patients with schizophrenia. CONCLUSIONS: Lower prefrontal NAA-and by inference greater neuronal pathology-predicted more severe negative symptoms in patients with schizophrenia. These data demonstrate a relationship between an intraneuronal measure of dorsolateral prefrontal cortex integrity and negative symptoms in vivo and represent further evidence for the involvement of the dorsolateral prefrontal cortex in negative symptoms associated with schizophrenia.


Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Córtex Pré-Frontal/química , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Adulto , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Química Encefálica , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo
18.
Neuroimage ; 12(3): 268-75, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10944409

RESUMO

Monoaminergic neurotransmitters are known to have modulatory effects on cognition and on neurophysiological function in the cortex. The current study was performed with BOLD fMRI to examine physiological correlates of the effects of dextroamphetamine on working-memory performance in healthy controls. In a group analysis dextroamphetamine increased BOLD signal in the right prefrontal cortex during a task with increasing working-memory load that approached working-memory capacity. However, the effect of dextroamphetamine on performance and on signal change varied across individuals. Dextroamphetamine improved performance only in those subjects who had relatively low working-memory capacity at baseline, whereas in the subjects who had high working-memory capacity at baseline, it worsened performance. In subjects whose performance deteriorated, signal change was greater than that in subjects who had an improvement in performance, and these variations were correlated (Spearman rho = 0.89, P<0.02). These data shed light on the manner in which monoaminergic tone, working memory, and prefrontal function interact and, moreover, demonstrate that even in normal subjects the behavioral and neurophysiologic effects of dextroamphetamine are not homogeneous. These heterogeneic effects of dextroamphetamine may be explained by genetic variations that interact with the effects of dextroamphetamine.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Dextroanfetamina/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/efeitos dos fármacos
19.
Neuropsychopharmacology ; 22(2): 125-32, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10649825

RESUMO

Schizophrenia has been linked to abnormal dopamine function, recently to excessive amphetamine-induced release of striatal dopamine, and also to pathology of prefrontal cortical neurons. It has been hypothesized that prefrontal pathology is a primary condition that leads to dopamine dysregulation. We evaluated in vivo the relationship between neuronal integrity in dorsolateral prefrontal cortex, assessed as N-acetylaspartate (NAA) relative concentrations measured with proton magnetic resonance spectroscopic imaging, and amphetamine-induced release of striatal dopamine, assessed with 11C-raclopride Positron Emission Tomography (PET) in patients with schizophrenia and in healthy subjects. In the patients, NAA measures in dorsolateral prefrontal cortex selectively predicted striatal displacement of 11C-raclopride after amphetamine infusions (rho = -0.76, p < .02). In contrast, NAA measures in other cortical regions and in healthy subjects did not show any correlation. These results support the hypothesis that in schizophrenia neuronal pathology of dorsolateral prefrontal cortex is directly related to abnormal subcortical dopamine function.


Assuntos
Anfetamina/farmacologia , Ácido Aspártico/análogos & derivados , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Ácido Aspártico/metabolismo , Radioisótopos de Carbono/farmacocinética , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Racloprida/farmacocinética , Valores de Referência , Esquizofrenia/diagnóstico por imagem , Tomografia Computadorizada de Emissão/métodos
20.
Am J Psychiatry ; 157(1): 26-33, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10618009

RESUMO

OBJECTIVE: Abnormal activation of the dorsolateral prefrontal cortex and a related cortical network during working memory tasks has been demonstrated in patients with schizophrenia, but the responsible mechanism has not been identified. The present study was performed to determine whether neuronal pathology of the dorsolateral prefrontal cortex is linked to the activation of the working memory cortical network in patients with schizophrenia. METHOD: The brains of 13 patients with schizophrenia and 13 comparison subjects were studied with proton magnetic resonance spectroscopic ((1)H-MRS) imaging (to measure N-acetylaspartate as a marker of neuronal pathology) and with [(15)O]water positron emission tomography (PET) during performance of the Wisconsin Card Sorting Test (to measure activation of the working memory cortical network). An independent cohort of patients (N=7) was also studied in a post hoc experiment with (1)H-MRS imaging and with the same PET technique during performance of another working memory task (the "N-back" task). RESULTS: Measures of N-acetylaspartate in the dorsolateral prefrontal cortex strongly correlated with activation of the distributed working memory network, including the dorsolateral prefrontal, temporal, and inferior parietal cortices, during both working memory tasks in the two independent groups of patients with schizophrenia. In contrast, N-acetylaspartate in other cortical regions and in comparison subjects did not show these relationships. CONCLUSIONS: These findings directly implicate a population of dorsolateral prefrontal cortex neurons as selectively accounting for the activity of the distributed working memory cortical network in schizophrenia and complement other evidence that dorsolateral prefrontal cortex connectivity is fundamental to the pathophysiology of the disorder.


Assuntos
Ácido Aspártico/análogos & derivados , Memória/fisiologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Ácido Aspártico/metabolismo , Ácido Aspártico/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Feminino , Humanos , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Masculino , Modelos Neurológicos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Radioisótopos de Oxigênio , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Fluxo Sanguíneo Regional , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Tomografia Computadorizada de Emissão/estatística & dados numéricos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...